
7 Poisson’s and Laplace’s equations
Summarizing the properties of electrostatic fields we have learned so far, they
satisfy the laws of electrostatics shown in the margin and, in addition, Laws of

electrostatics:

∇ · E = ρ/εo
∇×E = 0

E = −∇V as a consequence of ∇×E = 0.

• Using these relations, we can re-write Gauss’s law as

∇ ·E = −∇ · (∇V ) =
ρ

εo
,

from which it follows that

∇2V = − ρ

εo
, (Poisson’s eqn)

where
∇2V ≡ ∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2

is known as Laplacian of V . Poisson’s eqn:

∇2V = − ρ

εo

Laplace’s eqn:

∇2V = 0

– A special case of Poisson’s equation corresponding to having

ρ(x, y, z) = 0

everywhere in the region of interest is

∇2V = 0. (Laplace’s eqn)
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Focusing our attention first on Laplace’s equation, we note that the equation
can be used in charge free-regions to determine the electrostatic potential
V (x, y, z) by matching it to specified potentials at boundaries as illustrated
in the following examples:

z

x

y

z = d = 2 m

V (d) = −3 V

V (0) = 0

z = 0
V (z) =?

z

V (z)

V (z) = Az + B

Example 1: Consider a pair of parallel conducting metallic plates of infinite extents
in x and y directions but separated in z direction by a finite distance of d = 2
m (as shown in the margin). The conducting plates have non-zero surface charge
densities (to be determined in Example 2), which are known to be responsible for
an electrostatic field E = ẑEz measured in between the plates. Each plate has
some unique and constant electrostatic potential V since neither E(r) nor V (r)
can dependent the coordinates x or y given the geometry of the problem.

Using Laplace’s equation determine V (z) and E(z) between the plates if the potential
of the plate at z = 0 is 0 (the ground), while the potential of the plate at z = d
is −3 V.

Solution: Since the potential function V = V (z) between the plates is only dependent
on z, it follows that Laplace’s equation simplifies as

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
=

∂2V

∂z2
= 0.

This equation can be satisfied by

V (z) = Az +B

where A and B are constants to be determined. Now applying the given boundary
conditions, we first notice that (at the lower plate)

V (0) = (Az +B)|z=0 = B = 0.
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Applying the second boundary condition (at the top plate) we find

V (2) = (Az + 0)|z=2 = 2A = −3V ⇒ A = −3

2

V
m
.

The upshot is, potential function

V (z) = −3

2
z, for 0 < z < 2m.

Finally, we determine the electric field between the plates as

E = −∇V = −∇(−3

2
z) = ẑ

∂

∂z
(
3

2
z) = ẑ

3

2

V
m
.

z

x

y

z = d = 2 m

V (d) = −3 V

V (0) = 0

z = 0
V (z) =?

z

V (z)

V (z) = −3

2
z−3

0

E = −∇(−3

2
z) =

3

2
ẑ

Example 2: In Example 1 what are the surface charge densities of the metallic plates
located at z = 0 and z = 2 m surfaces?

Solution: Since the electric field
E = ẑ

3

2

V
m

in between the plates, comparing this field with the field

E = ẑ
ρs
εo

of a pair of parallel surfaces carrying surface charge densities ρs and −ρs (at
z = 0 and z = 2 m), we find that

ρs =
3

2
εo

on the surface at z = 0. The surface at z = 2 m has ρs = −3
2εo.

3



Notice that our solution with equal and opposite charge densities on the parallel
surfaces implies that electrostatic fields are zero within the conducting plates
where the fields due to two charged surfaces are canceling out. This conclusion is
consistent with having constant electrostatic potentials within conducting regions
as will be discussed in the next lecture.
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Vp =?
E+E− = 0

3 m

Example 3: A pair of copper blocks separated by a distance d = 3 m in x direction
hold surface charge densities of ρs = ±2 C/m2 on surfaces facing one another as
shown in the margin. The blocks are assigned constant potentials Vo = 0 and Vp

(see figure). What is the potential difference Vp?

Solution: Let D+ = x̂εoEx denote the displacement vector in between the blocks, and
let D− = 0 denote the displacement vector within the block with a surface at
x = 0. Then the boundary condition equation used at x = 0 implies that

x̂ · (D+ −D−) = εoEx = 2
C
m2

⇒ Ex =
2

εo
.

In that case, potential difference between the blocks is

V = Exd =
2

εo
3 =

6

εo
.

Since the block on the left is at a higher potential (electric field vectors point
from high to low potential) assigned as Vo = 0, we must have

Vp = − 6

εo
.
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Poisson’s equation
∇2V = − ρ

εo
is used in regions where the charge density ρ(r) is non-zero. The following
example illustrates a possible use of Poisson’s equation.

−ρ1 < 0
z

x

−W1

E1x(x)

ρ1W1

2εo

x

ρ2 > 0

W2

E2x(x)

ρ2W2

2εo

x

−W1

W2

Ex(x)

−ρ1W1

εo

x

W2−W1

E
+-

Example 4: An infinite charged slab of width W1, located over −W1 < x < 0, has a
negative volumetric charge density of −ρ1 C/m3, ρ1 > 0. A second slab of width
W2 and positive charge density ρ2 is located over 0 < x < W2 as shown in the
margin. The electric field of this static charge configuration under the constraint
W1ρ1 = W2ρ2 was computed in an earlier section as

E =

{
−x̂ρ1(x+W1)

εo
, for −W1 < x < 0

x̂ρ2(x−W2)
εo

, for 0 < x < W2

and is depicted in the margin. Determine the electrostatic potential in the re-
gion and the potential difference V21 ≡ V (W2) − V (−W1) satisfying Poisson’s
equation.

Solution: This is a one dimensional geometry where E and potential V depend only on
coordinate x. Therefore, Poisson’s equation ∇2V = −ρ/εo takes the simplified
form

d2V

dx2
= −ρ(x)

εo
.

Integral of this equation over x yields in the left dV
dx = −Ex, which implies, given

the electric field result from above,

dV

dx
=

{
ρ1(x+W1)

εo
, for −W1 < x < 0

−ρ2(x−W2)
εo

, for 0 < x < W2
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Integrating dV
dx once more (i.e., finding suitable anti-derivatives with integration

constants), we find

V (x) =

{
ρ1(x+W1)2

2εo
+ V1, for −W1 < x < 0

−ρ2(x−W2)2

2εo
+ V2, for 0 < x < W2

where the integration constants included on each line have been selected so that
V2 = V (W2), V1 = V (−W1).

Requiring a unique potential value at x = 0 (we can only associate a single potential
energy level with each position in space) compatible with this expression for V (x),
we obtain

ρ1(0 +W1)2

2εo
+ V1 = −ρ2(0−W2)2

2εo
+ V2,

from which

V21 = V2 − V1 =
ρ2W 2

2 + ρ1W 2
1

2εo
=

ρ2W2(W1 +W2)

2εo
=

ρ1W1(W1 +W2)

2εo
.

Note that the equation above can be solved for W1, W2, and W2 + W1 in terms of
V12, ρ2, and ρ1, providing useful formulas for diode design (see ECE 440). We
can also get useful specific formulae for V1 and V2 by imposing V (0) = 0, i.e.,
choosing x = 0 to be the reference point.

V1

V (x)
V2

−ρ1 < 0
z

x

−W1

ρ2 > 0

W2
Ex(x)

−ρ1W1

εo

x

W2−W1

E
+-

−W1

W2 x

• The solution of Poisson’s equation

∇2V = − ρ

εo
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with an arbitrary ρ existing over a finite region in space can be obtained
as

x

y

z
r− r′

ρ(r′)

r′r

O

V (r) =

∫
ρ(r′)

4πεo|r− r′|d
3r′

where d3r′ ≡ dx′dy′dz′ and the 3D integral on the right over the primed
coordinates is performed over the entire region where the charge density
is non-zero.

– Verification: The solution above can be verified by combining a
number of results we have seen earlier on:

1. In Lecture 5 we learned that the electric potential V (r) of a
point charge e at the origin is

V (r) =
e

4πεo|r|
.

Clearly, this singular result is a solution of Poisson’s equa-
tion above (and the stated boundary condition) for a charge
density input of

ρ(r) = eδ(r).

2. Using ECE 210-like terminology and notation, the above re-
sult can be represented as

δ(r) → Poisson’s Eqn → 1

4πεo|r|
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identifying the output on the right as 3D “impulse response”
of the linear and shift-invariant (LSI) system represented
by Poisson’s equation.

3. Because of shift-invariance, we have

δ(r− r′) → Poisson’s Eqn → 1

4πεo|r− r′|
,

meaning that a shifted impulse causes a shifted impulse re-
sponse.

The shifted impulse response is usually called “Green’s
function” G(r, r′) in EM theory.

4. Because of linearity, we are allowed to use superpositioning
arguments like
∫

ρ(r′)δ(r−r′)d3r′ = ρ(r) → Poisson’s Eqn →
∫

ρ(r′)
1

4πεo|r− r′|d
3r′ = V (r),

which concludes our verification of the electrostatic1 potential
solution. Note how we made use of the sifting property of the
impulse (from ECE 210) in above calculation.

• As an application of the general solution of Poisson’s equation, namely

∇2V = − ρ

εo
⇒ V (r) =

∫
ρ(r′)

4πεo|r− r′|d
3r′,

1Also, in quasi-statics we use ρ(r′, t) to obtain V (r, t) over regions small compared to λ = c/f , with f
the highest frequency in ρ(r′, t).
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we next provide an outline of the proof of Helmholtz theorem (see
Lecture 4) which states that any vector field F(x, y, z) that vanishes in
the limit r =

√
x2 + y2 + z2 → ∞ can be reconstructed uniquely from

its divergence and curl:

First, with no loss of generality, we write

F = −∇V +∇×A

in terms of scalar and vector fields V (x, y, z) and A(x, y, z) to be de-
termined. Taking next the divergence of F (and using ∇ ·∇×A = 0),
we find that

∇ · F = −∇2V ⇒ V (r) =

∫
(∇ · F)r=r′

4π|r− r′|
d3r′

in analogy with Poisson’s equation (with ∇ · F replacing ρ/εo). Also,
taking the curl of F (and using ∇×∇V = 0) and assuming2 ∇ ·A = 0
we find (similarly)

∇×F = ∇×∇×A = ∇(∇·A)−∇2A ⇒ A(r) =

∫
(∇× F)r=r′

4π|r− r′| d3r′.

These results validate Helmholtz theorem for fields F vanishing at infinity,
since, evidently, V and A required to reconstruct F can be uniquely specified
in terms of ∇ · F and ∇× F, respectively.

2We are justified to assume ∇ · A as we please in specifying A by virtue of Helmholtz theorem we
are proving (if you are concerned about circular reasoning, go ahead and evaluate the divergence of the
specified A to confirm that it vanishes everywhere as long as F vanishes in infinity).
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