ANTENNAS

Vector and Scalar Potentials

Maxwell's Equations

\[\nabla \times \mathbf{E} = -j\omega \mathbf{B} \] \hspace{1cm} (M1)

\[\nabla \times \mathbf{H} = \mathbf{J} + j\omega \mathbf{D} \] \hspace{1cm} (M2)

\[\nabla \cdot \mathbf{D} = \rho \] \hspace{1cm} (M3)

\[\nabla \cdot \mathbf{B} = 0 \] \hspace{1cm} (M4)

\[\mathbf{D} = \varepsilon \mathbf{E} \]

\[\mathbf{B} = \mu \mathbf{H} \]

For a linear, homogeneous, isotropic medium \(\mu \) and \(\varepsilon \) are constant.

Since \(\nabla \cdot \mathbf{B} = 0 \), there exists a vector \(\mathbf{A} \) such that \(\mathbf{B} = \nabla \times \mathbf{A} \) and \(\nabla \cdot (\nabla \times \mathbf{A}) = 0 \). \(\mathbf{A} \) is called the magnetic vector potential. There are infinitely many vectors \(\mathbf{A} \) that satisfy \(\mathbf{B} = \nabla \times \mathbf{A} \) thus we later need to specify \(\nabla \cdot \mathbf{A} \).

(M1) can be written as

\[\nabla \times \mathbf{E} = -j\omega \nabla \times \mathbf{A} \Rightarrow \nabla \times (\mathbf{E} + j\omega \mathbf{A}) = 0 \] \hspace{1cm} (1)

\[\nabla \times \text{Vector} = 0 \Rightarrow \text{Vector} = \nabla (\text{some scalar}) \] \hspace{1cm} (2)

\[\mathbf{E} + j\omega \mathbf{A} = -\nabla \varphi \quad \varphi : \text{scalar potential} \] \hspace{1cm} (3)

\[\mathbf{E} = -j\omega \mathbf{A} - \nabla \varphi \] \hspace{1cm} (4)

(M2) can be written as

\[\nabla \times \mathbf{B} = \mu \mathbf{J} + j\omega \varepsilon \mathbf{E} \] \hspace{1cm} (5)

\[\nabla \times \nabla \times \mathbf{A} = \mu \mathbf{J} + j\omega \varepsilon (\mu \mathbf{J} - \nabla \varphi) \] \hspace{1cm} (6)

\[-\nabla^2 \mathbf{A} + \nabla (\nabla \cdot \mathbf{A}) = \mu \mathbf{J} + \omega^2 \mu \varepsilon \mathbf{A} - j\omega \epsilon \mu \nabla \varphi \] \hspace{1cm} (7)
To simplify the equation, choose $\nabla \cdot A$ as

$$\nabla \cdot A = -j\omega \mu \varepsilon \phi$$ \hspace{1cm} (8)

This is called the **Lorentz Condition**. This leads to

$$\nabla^2 A + \omega^2 \mu \varepsilon A = -\mu J$$ \hspace{1cm} \textit{D'Alembert's Equation} \hspace{1cm} (9)

The problem now consists of finding the vector potential A due to a source J. From the knowledge of A, E and H can be determined.

Review spherical coordinates, gradient, divergence, curl, and laplacian in spherical coordinates. (Textbook, Appendix A pp. 689-691).

In spherical coordinates, the solution for the vector potential $A(r)$ is given by

$$A(r) = \mu \int \int \int_{V'} \frac{J(r') e^{-j|\mathbf{r} - \mathbf{r}'|}}{4\pi |\mathbf{r} - \mathbf{r}'|} \, dv'$$ \hspace{1cm} (10)

In the above equation, V' is the volume defining the source over which the integration is performed. \mathbf{r} is the vector from the origin of the coordinate system, O, to the observer and \mathbf{r}' is the vector from O to a source point within V'.

![Figure 1](image)

From A, use Maxwell's Equations to derive E and H.

$$\mathbf{B} = \nabla \times \mathbf{A}$$ \hspace{1cm} (11)

$$j\omega \varepsilon \mathbf{E} = \nabla \times \mathbf{H}$$ \hspace{1cm} (12)
Hertzian Dipole

Assume a source point infinitely small in size located at the origin of the coordinate system with elemental length dl, and driven by a current with strength I_0 in the $+z$ direction. The equation for the current density of such a system is given by

$$\mathbf{J}(r') = iz \frac{I_0 dl}{4\pi} \delta(x')\delta(y')\delta(z') \quad (13)$$

Upon substitution in (10)

$$\mathbf{A}(r) = iz \frac{\mu I_0 dl}{4\pi r} \exp(-j\beta r) \quad (14)$$

In spherical coordinates: $iz = ir\cos\theta - i\theta\sin\theta$

$$\mathbf{A}(r) = (ir\cos\theta - i\theta\sin\theta) \frac{\mu I_0 dl}{4\pi r} \exp(-j\beta r) \quad (15)$$

$$A_r = \frac{\mu}{4\pi r} I_0 dl \cos\theta \exp(-j\beta r) \quad (16)$$

$$A_\theta = -\frac{\mu}{4\pi r} I_0 dl \sin\theta \exp(-j\beta r) \quad (17)$$

Calculate E and H fields.

$$\mathbf{H} = \frac{1}{\mu} \nabla \times \mathbf{A} \quad (18)$$

$$H_r = \frac{1}{r \sin\theta} \left[\frac{\partial}{\partial \theta} (A_\phi \sin\theta) - \frac{\partial A_\theta}{\partial \phi} \right] = 0 \quad (19)$$

$$H_\theta = \frac{1}{r \sin\theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (rA_\phi) \right] = 0 \quad (20)$$

$$H_\phi = \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_\theta) - \frac{\partial A_\phi}{\partial \theta} \right] \quad (21)$$

$$H_\phi = \frac{I_0 dl}{4\pi r} \sin\theta \exp(-j\beta r) j\beta(1 + \frac{1}{j\beta r}) \quad (22)$$

Using $\mathbf{E} = \frac{1}{j\omega\varepsilon} \nabla \times \mathbf{H}$, we can derive the components of the electric field.
\[E_r = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (H_\phi \sin \theta) \right] \frac{1}{j \omega \epsilon} \]

(23)

\[E_r = \frac{2 \cos \theta I_1 \, dl}{4 \pi r^2} \left\{ e^{-j \beta r} \right\} j \beta \left(1 + \frac{1}{j \beta r} \right) \frac{1}{j \omega \epsilon} \]

(24)

\[E_\theta = \frac{1}{r} \left[\frac{\partial}{\partial r} (r H_\phi) \right] \frac{1}{j \omega \epsilon} \]

(25)

\[E_\theta = -\frac{j \beta I_1 \, dl}{4 \pi r} \sin \theta \left\{ e^{-j \beta r} \right\} \left[-j \beta \left(1 + \frac{1}{j \beta r} - \frac{1}{\beta^2 r^2} \right) \right] \frac{1}{j \omega \epsilon} \]

(26)

In summary, the exact solutions for the fields of an infinitesimal antenna are given by

\[E_r = \frac{j \beta I_1 \, dl}{4 \pi r} e^{-j \beta r} 2 \cos \theta \left(\frac{1}{j \beta r} + \frac{1}{(j \beta r)^2} \right) \sqrt{\frac{\mu}{\epsilon}} \]

(27)

\[E_\theta = \frac{j \beta I_1 \, dl}{4 \pi r} e^{-j \beta r} \sin \theta \left(1 + \frac{1}{j \beta r} + \frac{1}{(j \beta r)^2} \right) \sqrt{\frac{\mu}{\epsilon}} \]

(28)

\[E_\phi = 0 \]

(29)

\[H_\phi = \frac{j \beta I_1 \, dl}{4 \pi r} e^{-j \beta r} \sin \theta \left(1 + \frac{1}{j \beta r} \right) \]

(30)

\[H_r = H_\theta = 0 \]

In most practical cases, the observer is located several wavelengths away from the source. This defines a \textit{far field} region which is the region where the distance from the source to the observer is much larger than the wavelength \(\lambda = \frac{2 \pi}{\beta} \). In this case \(r >> \lambda \) so that \(\beta r >> 1 \); consequently, the terms varying as \(1/r^2 \) and \(1/r^3 \) can be neglected. The far-field solutions for the infinitely small antenna thus become

\[E_r = 0 \]

(30)

\[E_\theta = \sqrt{\frac{\mu}{\epsilon}} \frac{j \beta I_1 \, dl}{4 \pi r} e^{-j \beta r} \sin \theta \]

(31)

\[H_\phi = \frac{j \beta I_1 \, dl}{4 \pi r} e^{-j \beta r} \sin \theta \]

(32)
Note that the ratio E_θ/H_ϕ is the characteristic impedance η of the propagation medium. Over a small region, the far field solution is a plane-wave solution since the electric and magnetic fields are in phase, perpendicular to each other and their ratio is the intrinsic impedance η, and are perpendicular to the direction of propagation. However, unlike plane waves, the far field solution is a function of the elevation angle θ, and does not have constant magnitude ($1/r$ dependence).

Radiation Patterns

The graph that describes the far-field strength versus the elevation angle at a fixed distance is called the *radiation pattern* of the antenna. In general, radiation patterns vary with θ and ϕ. The distance from the dipole to a point on the radiation pattern is proportional to the field intensity or power density observed in that direction. Figure 2 shows the E-field and power density radiation patterns of a Hertzian dipole. As can be verified these patterns are based on the $\sin \theta$ and $\sin^2 \theta$ dependence of the E-field and power density respectively.

![Radiation Pattern Diagrams](image)

Figure 2. (a) Radiation pattern for E field (b) Radiation pattern for power density

Time Average Power in Radiation Zone

In order to calculate the power radiated in the far field, we need to determine the time-average Poynting vector or power density $<P>$.

$$< P > = \frac{1}{2} \text{Real} \left[E \times H^* \right] = \frac{i}{2} \text{Real} \left[\frac{H}{\sqrt{\varepsilon}} |H_\phi|^2 \right]$$

(33)
\[<\mathbf{P}> = \frac{i_\eta}{2} \text{Real} \left[\frac{\beta I_0 dl}{4\pi r} \right] \sin^2 \theta \]

(34)

The total power radiated \(P_T \) at a distance \(r \) is by definition obtained by integrating the Poynting vector over a sphere of radius \(r \).

\[
\text{Total Power} = P_T = \int_0^{2\pi} \int_0^\pi <\mathbf{P}> \cdot d\mathbf{S}
\]

(35)

d\(S\) is the elemental surface of radius \(r \) and is given by

\[
d\mathbf{S} = i_r r^2 \sin \theta \, d\theta \, d\phi
\]

(36)

so that

\[
P_T = \int_0^{2\pi} \int_0^\pi \frac{i_\eta}{2} \left(\frac{\beta I_0 dl}{4\pi} \right)^2 r^2 \sin^3 \theta \, d\theta \, d\phi
\]

(37)

\[
P_T = \frac{\eta}{2} \left(\frac{\beta I_0 dl}{4\pi} \right)^2 \int_0^{\pi} \sin^3 \theta \, d\theta
\]

(38)

\[
P_T = \frac{4\pi \eta}{3} \left(\frac{\beta I_0 dl}{4\pi} \right)^2 = \pi \frac{\eta}{3} \frac{\|dl\|^2}{\lambda} \|I_0\|^2
\]

(39)

The **directive gain** is a figure of merit defined as

\[
\text{Directive Gain} = \frac{\text{Poynting power density}}{\text{Average Poynting power density over area of sphere of radius } r}
\]

or

\[
\text{Directive Gain} = \frac{<\mathbf{P}>}{P_T/4\pi r^2}
\]

(40)

For an infinitesimal antenna, we get

\[
\text{Directive Gain} = \frac{\eta}{2} \left(\frac{\beta I_0 dl}{4\pi} \right)^2 \frac{\sin^2 \theta}{4\pi r^2} = \frac{3}{2} \sin^2 \theta
\]

(41)
The *directivity* is the directive gain in the direction of its maximum value. For an infinitesimal antenna, the direction of maximum value is for $\theta = \pi/2$ and the directivity is 1.5.

Radiation Resistance

The *radiation resistance* of an antenna is defined as the value of the resistor that would dissipate an equal amount of power than the power radiated for the same value of current. Using

$$P_T = \frac{1}{2} R_{rad} I_o^2$$

(42)

We get

$$R_{rad} = \frac{2P_T}{I_o^2}$$

(43)

For an infinitesimal antenna, we get

$$R_{rad} = \frac{2}{I_o^2} \left(\frac{4\pi}{3} \right) \eta \left| \frac{\beta I_o dl}{4\pi} \right|^2$$

(44)

Using $\beta = \frac{2\pi}{\lambda}$, and $\eta = 120\pi$ ohms, we obtain

$$R_{rad} = 80\pi^2 \left(\frac{dl}{\lambda} \right)^2 \Omega$$

(45)