Robust Localization Methods for Passivity Enforcement of Linear Macromodels

Zohaib Mahmood¹, Alessandro Chinea², Giuseppe C. Calafiore³, Stefano Grivet-Talocia³ and Luca Daniel¹

¹Massachusetts Institute of Technology, USA
²IdemWorks, Italy
³Politecnico di Torino, Italy

SPI - May 13, 2013
Outline

• Motivation for Compact Dynamic Passive Modeling

• What is Passivity?

• Overview of Existing Techniques

• Enforcing Passivity using Localization Methods

• Results
Motivation for Automatic Model Generation

Linear devices are completely described by their frequency response (Scattering/Impedance parameters)

Compact Model $H(s)$

$H(s)$ must be PASSIVE

Circuit Simulator (Time Domain Simulations)
Passivity

DEFINITION

Passivity is the inability of a system (or model) to generate more energy than what had been stored in it previously.

Often referred to as dissipativity in other scientific communities.
Importance of Preserving Passivity

Problems with non-passive models:
- Time domain circuit simulation may “blow-up”
- Results may become completely non-physical.

\[H(j\omega) \] (real and imaginary part)
Importance of Preserving Passivity

Problems with non-passive models:
- Time domain circuit simulation may “blow-up”
- Results may become completely non-physical.

\[H(j\omega) \] (real and imaginary part) \[y(t) \]

![Diagram showing frequency and time domain representations of a non-passive model and a passive model. The non-passive model's output becomes unstable over time.](image)

Output of the non-passive model, shown by green lines, becomes unstable.
Existing Techniques
Overview of Existing Techniques

Simultaneous Pole/Residue Optimization
[Sou2005]

• Guarantees stability and passivity
• Preserve accuracy (poles are not fixed)
• Quasi-convex relaxation
• Solved using localization methods
• Could be expensive

• Models *parameterized* with
 certificates of global stability/passivity
Simultaneous Pole/Residue Optimization

\[
\min_{p,q} \left\| \hat{H}(s) - \frac{p(s)}{q(s)} \right\|_{\infty}
\]

• Solves a relaxation to the optimal H-infinity norm problem
• In addition to stability and passivity, that framework can handle constraints such as minimizing quality factor and matching transfer function derivatives
• That framework has been extended to parameterized modeling problems
• An open-source matlab tool, available at: http://www.mit.edu/~dluca/squid/

Overview of Existing Techniques

Simultaneous Pole/Residue Optimization [Sou2005]

Stable Models
[Gustavsen1999, Deschrijver2005]
Overview of Existing Techniques

Simultaneous Pole/Residue Optimization [Sou2005]

Passive Models [Coelho2001]
- Global optimal (for fixed poles)

Stable Models [Gustavsen1999, Deschrijver2005]
Overview of Existing Techniques

Simultaneous Pole/Residue Optimization [Sou2005]

- Passive Models [Coelho2001]
 - Global optimal (for fixed poles)

- Suboptimal (for fixed poles)

- Passivity (Sufficient cond.)

Stable Models
[Gustavsen1999, Deschrijver2005]
Overview of Existing Techniques

Simultaneous Pole/Residue Optimization [Sou2005]

Passive Models [Coelho2001]

Global optimal (for fixed poles)

Suboptimal (for fixed poles)

Passivity (Sufficient cond.) [Saraswat2004, Tommasi2011, Mahmood2012]

Stable Models [Gustavsen1999, Deschrijver2005]
Overview of Existing Techniques

Simultaneous Pole/Residue Optimization [Sou2005]

Perturbation Methods
[Grivet-Talocia2004, Gustavsen2008]

Passive Models
[Coelho2001]

Global optimal (for fixed poles)

Suboptimal (for fixed poles)

Passivity (Sufficient cond.)

Stable Models
[Gustavsen1999, Deschrijver2005]

Suboptimal (for fixed poles)

Perturbation Methods
[Grivet-Talocia2004, Gustavsen2008]
Simultaneous Pole/Residue Optimization [Sou2005]

Overview of Existing Techniques

Perturbation Methods
[Grivet-Talocia2004, Gustavsen2008]

Stable Models
[Gustavsen1999, Deschrijver2005]

Suboptimal
(for fixed poles)

Passive Models
[Coelho2001]

Global optimal
(for fixed poles)

Suboptimal
(for fixed poles)

Passivity (Sufficient cond.)

[This Work, Calafiore2012]
(The problem is posed as convex optimization and solved using localization methods)
Memory Comparison with [Coelho2001]

- 4-Port model with increasing order
- Run on a laptop with 4GB of main memory
Memory Comparison with [Coelho2001]

- 4-Port model with increasing order
- Run on a laptop with 4GB of main memory

![Graph showing memory comparison](image)
Problem Statement
Used Framework

• Algorithmic Flow for Perturbation based Passivity Enforcement

\{(\omega_k, S_k), k = 1..., K\}

Vector Fitting Algorithm
[Gustavsen 1999]

Hamiltonian Matrix Test
[Grivet-Tallocia 2008]

Yes

No

Data

Compute Stable Model

Is Model Passive

Perturb the model

Passive Model
The nominal ‘non-passive’ macromodel (from fitting/identification process)

\[
H(0, s) = C(sI - A)^{-1} B + D
\]

- Scattering matrix
- State-space realization (stable)
- Laplace variable

“0” here denotes “nominal”
Passivity Conditions

\[\| H(0) \|_{\mathcal{H}_\infty} = \sup_{\omega \in \mathbb{R}} \sigma_1(H(0, j\omega)) \leq 1 \]

Max singular value at single frequency

\[\sigma_1(X) = \sqrt{\max \lambda(X^H X)} \]
Passivity Enforcement via Perturbation

\[H(C_p, s) = (C + C_p)(sI - A)^{-1}B + D \]

- Perturbation term

\[\min \|C_p\|_F, \quad \text{s.t. } \|H(C_p)\|_{\mathcal{H}_\infty} \leq 1 \]

- Minimize perturbation
- Passivity constraint

We want to find the BEST passive macromodel
not just ONE passive macromodel
Choice of Objective Function

\[
\begin{align*}
\text{minimize } & \| C_p \|_F \\
\text{for Minimal perturbation}
\end{align*}
\]

\[
\begin{align*}
\text{minimize } & \| C_p K^T \|_F \\
\text{for Minimal impulse response perturbation [Grivet-Talocia2004]}
\end{align*}
\]

‘K’ is the Cholesky factor of the controllability Grammian of the system
Choice of Objective Function

\[\min \| C_p \|_F, \quad \text{s.t.} \quad \| H(C_p) \|_{H_\infty} \leq 1 \]

Change of notation

\[\min_x f(x) \quad \text{s.t.} \quad h(x) \leq 0 \]

where: \(x = \text{vec}(C_p), \quad x \in \mathbb{R}^n \)

\[f(x) = \| x \|_2 = \| C_p \|_F, \quad h(x) = \| H(C_p) \|_{H_\infty} - 1 \]
Compact Formulation of Passivity Enforcement

\[
\min_x f(x) \quad \text{s.t.} \quad h(x) \leq 0
\]

Our cost function is a norm
any norm is convex

The function \(h(x) \) is convex
(but non-smooth)\(^1\)

Compact Formulation of Passivity Enforcement

\[
\min_{x} f(x) \quad \text{s.t.} \quad h(x) \leq 0
\]

Our cost function is a norm
any norm is convex

The function \(h(x)\) is convex
(but non-smooth)\(^{1}\)

Compact Formulation of Passivity Enforcement

\[
\min_{x} f(x) \quad \text{s.t.} \quad h(x) \leq 0
\]

Our cost function is a norm
any norm is convex

\(f(x)\)

The function \(h(x)\) is convex
(but non-smooth)\(^1\)

Convex function
(finding global minimum-easy)

Non-convex function
(finding global minimum extremely difficult)

Localization Based Methods

(These methods can handle convex non-smooth functions)
Localization Based Methods

* Global optimal
Localization Based Methods

Global optimal
Localization Based Methods

Algorithm terminates when the updated search space is ‘small enough’

* Global optimal
Using Localization Methods

Problem specific details of the localization methods

- How to define the initial search space guaranteed to contain the global optimal?

- How to define a cutting plane that reduces the search space?

- How to update the search space?
Challenge: How to Define the Initial Set

\[f(x) = \|x\|_2 \quad \text{(Minimal perturbation)} \]

Feasible region

\[h(x) \leq 0 \]

No perturbation
Observation

\[f(x) = \|x\|_2 \]

(Minimal perturbation)

Observation: Any feasible point \(x_F \) has \(f(x_F) \geq f(x^*) \)
Observation

$$f(x) = \|x\|_2$$ (Minimal perturbation)

OBSERVATION: Any feasible point x_F has $f(x_F) \geq f(x^*)$
The Initial Set

\[f(x) = \|x\|_2 \]

(Minimal perturbation)

Initial set is a hypersphere with radius \(R = \|x_F\|_2 \)

Feasible region

\(h(x) \leq 0 \)

A feasible point

No perturbation

\(x_F \)
The Initial Set: A Feasible Point

\[H(C_p, s) = (C + C_p)(sI - A)^{-1}B + D \]

Can we find a passive system analytically?
The Initial Set: A Feasible Point

\[H(C_p, s) = (C + C_p)(sI - A)^{-1}B + D \]

Can we find a passive system analytically?

\[C_p = -C \implies H(C_p, s) = D \]

IS PASSIVE
The Initial Set: A Feasible Point

\[H(C_p, s) = (C + C_p)(sI - A)^{-1}B + D \]

Can we find a passive system analytically?

\[C_p = -C \implies H(C_p, s) = D \]

IS PASSIVE

\[x_F = -\text{vec}(C) \]

Is a feasible point
The Ellipsoid Algorithm*
The Ellipsoid Algorithm*

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{s.t.:} & \quad h(x) \leq 0
\end{align*}
\]

Feasible region

\[h(x) \leq 0\]

No perturbation

[*Bland1981]
The Ellipsoid Algorithm*

\[
\begin{align*}
\text{minimize } & \quad f(x) \quad \text{s.t.: } h(x) \leq 0 \\
\end{align*}
\]

Feasible region

\[h(x) \leq 0 \]

\[x^{(0)} \]

\[h(x^{(0)}) > 0 \]

\[g \in \partial h \]

\[\mathcal{E}^{(0)} \]

[*Bland1981]
The Ellipsoid Algorithm*

minimize $f(x)$ s.t.: $h(x) \leq 0$

Feasible region

$h(x) \leq 0$

$\mathcal{E}^{(0)}$

$g \in \partial h$

$\mathbf{x}^{(0)}$

[*Bland1981]
The Ellipsoid Algorithm*

minimize \(f(x) \) s.t.: \(h(x) \leq 0 \)

Feasible region

\[h(x) \leq 0 \]

\[h(x^{(0)}) > 0 \]

\[g \in \partial h \]

\[\mathcal{E}^{(1)} \in \mathcal{E}^{(0)} \cap \{x \mid g^T (x - x^{(0)}) \leq 0\} \]

[*Bland1981]
The Ellipsoid Algorithm*

minimize $f(x)$ \text{s.t.:} $h(x) \leq 0$

Feasible region

$\mathcal{E}^{(1)}$

$\mathcal{E}^{(0)}$

$h(x) \leq 0$
The Ellipsoid Algorithm*

\[
\text{minimize } f(x) \quad \text{s.t. } h(x) \leq 0
\]

\[\mathcal{E}^{(1)}\]

Feasible region

\[h(x) \leq 0\]

*Bland1981
The Ellipsoid Algorithm*

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

\[E^{(1)}\]

Feasible region

\[h(x) \leq 0\]

\[h(x^{(1)}) < 0\]

\[*Bland1981*]
The Ellipsoid Algorithm*

\[\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0 \]

Feasible region

\[h(x) \leq 0 \]

\[h(x^{(1)}) < 0 \]

\[g = \nabla f \]

\[x^{(1)} \]

[*Bland1981]
The Ellipsoid Algorithm*

\[
\begin{align*}
\text{minimize } & \quad f(x) \\
\text{s.t.} & \quad h(x) \leq 0 \\
\end{align*}
\]

Feasible region

\[h(x) \leq 0\]

\[h(x^{(1)}) < 0\]

\[g = \nabla f\]

\[x^{(1)}\]

[*Bland1981*]
The Ellipsoid Algorithm

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

\[\mathcal{E}^{(1)}\]

Feasible region

\[h(x) \leq 0\]

\[h(x^{(1)}) < 0\]

\[\mathcal{E}^{(2)} \in \mathcal{E}^{(1)} \cap \{x \mid g^T (x - x^{(1)}) \leq 0\}\]

[*Bland1981]
The Ellipsoid Algorithm*

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

\[x \in \mathcal{E}^{(1)}\]

[Feasible region]

\[h(x) \leq 0\]

\[h(x^{(1)}) < 0\]

[*Bland1981]
The Ellipsoid Algorithm*

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

[Feasible region]

\[
h(x) \leq 0
\]

[*Bland1981]
The Ellipsoid Algorithm*

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{s.t.} & \quad h(x) \leq 0
\end{align*}
\]

Feasible region

\[h(x) \leq 0\]

Converge when the ellipsoid is small enough

\[*\text{Bland1981}\]
The Ellipsoid Algorithm

An ellipsoid is described as
\[\mathcal{E}(x, P) = \{ z \mid (z - x)^T P^{-1} (z - x) \leq 1 \} \]

Given: \(f, h \) and \(\mathcal{E}^{(0)}(x^{(0)}, P^{(0)}) \) containing \(x^* \)

Gradient selection: \(g_k = \begin{cases} \nabla f(x^{(k)}) & \text{if } h(x^{(k)}) \leq 0 \\ \partial h(x^{(k)}) & \text{if } h(x^{(k)}) > 0 \end{cases} \)

Convergence check:
\[
\begin{align*}
 h(x^{(k)}) &\leq 0 \\
 \sqrt{g_k^T P^{(k)} g_k} &\leq \delta \quad \text{return } x^{(k)} \quad \text{QUIT}
\end{align*}
\]
The Ellipsoid Algorithm

An ellipsoid is described as
\[\mathcal{E}(x, P) = \{ z \mid (z - x)^T P^{-1} (z - x) \leq 1 \} \]

Given: \(f, h \) and \(\mathcal{E}^{(0)}(x^{(0)}, P^{(0)}) \) containing \(x^* \)

Gradient selection: \(g_k = \begin{cases} \nabla f(x^{(k)}) & \text{if } h(x^{(k)}) \leq 0 \\ \partial h(x^{(k)}) & \text{if } h(x^{(k)}) > 0 \end{cases} \)

Update: \(x^{(k+1)} = x^{(k)} - \frac{1}{n+1} \frac{P^{(k)}}{\sqrt{g_k^T P^{(k)} g_k}} \),

\[
P^{(k+1)} = \frac{n^2}{n^2 - 1} \left[P^{(k)} - \frac{2}{n+1} \frac{P^{(k)} g_k^T g_k P^{(k)}}{g_k^T P^{(k)} g_k} \right]
\]
The Ellipsoid Algorithm

An ellipsoid is described as
\[\mathcal{E}(x, P) = \{ z \mid (z - x)^T P^{-1} (z - x) \leq 1 \} \]

Given: \(f, h \) and \(\mathcal{E}^{(0)}(x^{(0)}, P^{(0)}) \) containing \(x^* \)

Gradient selection: \(g_k = \begin{cases} \nabla f(x^{(k)}) & \text{if } h(x^{(k)}) \leq 0 \\ \partial h(x^{(k)}) & \text{if } h(x^{(k)}) > 0 \end{cases} \)

Update: \(x^{(k+1)} = x^{(k)} - \frac{1}{n+1} \frac{P^{(k)}}{\sqrt{x^T P^{(k)} g_k}} g_k \)

\[P^{(k+1)} = \frac{n^2}{n^2 - 1} \left(P^{(k)} - \frac{1}{n+1} \frac{P^{(k)} g_k g_k^T P^{(k)}}{g_k^T P^{(k)} g_k} \right) \]

\(O(n^2) \)
Properties of The Ellipsoid Algorithm

• Modest storage \(O(n^2) \quad x \in \mathbb{R}^n \)

• Modest computation per iteration \(O(n^2) \quad x \in \mathbb{R}^n \)

• Volume reduction \(\text{vol}(\mathcal{E}^{(k+1)}) < e^{\frac{-1}{2n}} \text{vol}(\mathcal{E}^{(k)}) \)

• \textit{ROBUST}, could take more iterations
Example 1: Large Passivity Violation (2 Port)

Singular values of the original non-passive model
Example 1: Large Passivity Violation (2 Port)

Singular values of the original non-passive model

Large passivity violation
Example 1: Large Passivity Violation (2 Port)

Singular values of the original non-passive model
Singular values of the perturbed model using [Gustavsen2008] (after 5 iterations)
Example 1: Large Passivity Violation (2 Port)

Singular values of the original non-passive model
Singular values of the perturbed passive model
Example 1: Large Passivity Violation (2 Port)

Standard Vector Fitting: model with N=36 states

Normalized Frequency

\[\Re S_{1,1} \]

Original

Passive

Normalized Frequency

\[\Im S_{1,1} \]

Original

Passive

Normalized Frequency
Example 1: Large Passivity Violation (2 Port)

Convergence plots for difference radii of the initial hyper-sphere

![Graph showing convergence plots for different radii of the initial hyper-sphere. The x-axis represents the number of iterations, the y-axis represents the objective function |Cp|, and the graph includes lines for different initial hypersphere radii: 0.06, 0.10, and 0.15. The lines are distinguished by colors: red, green, and blue, respectively.](image-url)
Example 1: Large Passivity Violation (2 Port)

Convergence plots for difference radii of the initial hyper-sphere

Objective function $|C_p|$

- Radius of Initial Hypersphere = 0.06
- Radius of Initial Hypersphere = 0.10
- Radius of Initial Hypersphere = 0.15

Took only 55 seconds

[On a laptop with 4GB main memory]
Example 2: 4-Port Models

- 4-Port model with increasing order
- Run on a laptop with 4GB of main memory

```
Example 2: 4-Port Models

- 4-Port model with increasing order
- Run on a laptop with 4GB of main memory
```

```
[Coelho2001]
This work

Model Order
Allocated Memory (GB)

2 GB !!!
2 MB
203 sec.

```

```
Example 2: 4-Port Models

- 4-Port model with increasing order
- Run on a laptop with 4GB of main memory
```

```
[Coelho2001]
This work

Model Order
Allocated Memory (GB)

2 GB !!!
2 MB
203 sec.

```
The Cutting Plane Method*

[*Kelley1960]
A Polyhedron

Intersection of a finite number of half-spaces

\[P = \{ x \mid Ax \leq b \} \]

\[
A = \begin{bmatrix}
 a_1^T \\
 \vdots \\
 a_5^T
\end{bmatrix}
\]
The Cutting Plane Method*

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

Feasible region

\[h(x) \leq 0\]

\[x^{(0)}\]

[*Kelley1960]
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

Feasible region

$h(x) \leq 0$

$x^{(0)}$

[*Kelley1960*]
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

Feasible region

$h(x) \leq 0$

[*(Kelley1960]*
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

[$*$Kelley1960]
The Cutting Plane Method*

minimize \(f(x) \) s.t.: \(h(x) \leq 0 \)

Feasible region

\(h(x) \leq 0 \)

[*Kelley1960]
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

Feasible region

$h(x) \leq 0$

Where to define the next cut?

[*Kelley1960]
The Cutting Plane Method

minimize $f(x)$ s.t.: $h(x) \leq 0$

Feasible region

$h(x) \leq 0$

Where to define the next cut?

In principle we can define a cut anywhere in the polyhedron

[*Kelley1960]*
The Cutting Plane Method*

minimize \(f(x) \) s.t. \(h(x) \leq 0 \)

In principle we can define a cut anywhere in the polyhedron

\[h(x) \leq 0 \]

[*)Kelley1960]
The Cutting Plane Method*

In principle we can define a cut anywhere in the polyhedron.

Not a good cut because it eliminates only a small part of the polyhedron.

In principle we can define a cut anywhere in the polyhedron.

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

\[h(x) \leq 0\]

Feasible region

[*Kelley1960]
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

Search for the center of the polyhedron (Chebychev center or Analytic center)

Feasible region

$h(x) \leq 0$

$h(x^{(1)}) < 0$

$x^{(1)}$

$g = \nabla f$

[1960]
The Cutting Plane Method*

minimize $f(x)$ \ s.t.: $h(x) \leq 0$

*$[Kelley1960]$

Feasible region

$h(x) \leq 0$

$h(x^{(1)}) < 0$

$x^{(1)}$

$g = \nabla f$

Search for the center of the polyhedron (Chebychev center or Analytic center)
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

[*Kelley1960]
The Cutting Plane Method*

minimize $f(x)$ s.t.: $h(x) \leq 0$

Feasible region

$h(x) \leq 0$

[*Kelley1960]
minimize $f(x)$ s.t.: $h(x) \leq 0$

[*Kelley1960*]
The Cutting Plane Method*

\[
\text{minimize } f(x) \quad \text{s.t.: } h(x) \leq 0
\]

[Feasible region]

\[
h(x) \leq 0
\]

[*Kelley1960]
The Cutting Plane Method*

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{s.t.:} & \quad h(x) \leq 0
\end{align*}
\]

Feasible region

\[h(x) \leq 0\]

Converge when the polyhedron is small enough

[*Kelley1960]
The Cutting Plane Method

A polyhedron is described as

\[P = \{ z \mid Az \leq b \} \]

Given: \(f, h \) and \(P^{(0)} \) containing \(x^* \), \(f_{LB}^{(0)} = 0 \)

Gradient selection: \(g_k = \begin{cases} \nabla f(x^{(k)}) & \text{if } h(x^{(k)}) \leq 0 \\ \partial h(x^{(k)}) & \text{if } h(x^{(k)}) > 0 \end{cases} \)

Convergence check:

\[h(x^{(k)}) \leq 0 \]

\[\left| f(x^{(k)}) - f_{LB}^{(k)} \right| \leq \delta \quad \text{return } x^{(k)} \quad \text{QUIT} \]
The Cutting Plane Method

A polyhedron is described as

\[P = \{ z \mid Az \leq b \} \]

Given: \(f, h \) and \(P^{(0)} \) containing \(x^* \), \(f_{LB}^{(0)} = 0 \)

Gradient selection: \(g_k = \begin{cases} \nabla f(x^{(k)}) & \text{if } h(x^{(k)}) \leq 0 \\ \partial h(x^{(k)}) & \text{if } h(x^{(k)}) > 0 \end{cases} \)

Update:

\[P^{(k+1)} = P^{(k)} \cap \{ z \mid a_{k+1}^T z \leq b \} \quad \text{Adding a new row to the A matrix} \]

\[x^{(k+1)} \in P^{(k+1)} \quad \text{Chebychev or Analytic center} \]

\[f_{LB}^{(k+1)} \quad \text{Piecewise Linear Lowerbound} \]
Properties of The Cutting Plane Method

- **LOWER BOUND on the global minimum:**
 - Computed as a by-product during the update
 - Lower bound gets tighter as the algorithm progresses

- Modest complexity per iteration $O(n^2 m)$ \(x \in \mathbb{R}^n\)
- **ROBUST**, could take more iterations

- **Extensions**
 - Multiple Cuts
 - Dropping Constraints
Example 1: Large Passivity Violation (2 Port)

Singular values of the original non-passive model
Singular values of the perturbed passive model
Example 1: Large Passivity Violation (2 Port)

Standard Vector Fitting: model with N=36 states
Example 1: Large Passivity Violation (2 Port)

Convergence plots for difference side length of the initial hyper-cube
Conclusions

- Convergence is always guaranteed…
 - … to the \textit{optimal} passive macromodel…
 - … not just one passive macromodel…
 - … the best macromodel (in the preferred norm)

- Lower bound on the Global Optimal

- Modest storage \(O(n^2)\) or \(O(n^2m)\)

- Issues and future work
 - Many iterations may be required
 - Work in progress to speed up the algorithm